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In the present paper a complete system of solutions of the linearized 
Navier-Stokes equations in the case of the steady motion of a viscous 
fluid in the absence of external forces is given. The system of solu- 
tions was found by the method of separation of variables given in El]. 
For the solutions obtained formulas of transformation from one center 
to another, 01 transfer formulas, are then deduced by means of which, as 
is done in f21, it is possible to solve various boundary value problems 
involving flow about spheres which reduce to solving an infinite system 
of linear algebraic equations. These solutions, deduced here by the 
method of 111, can in principle also be obtained from the general solu- 
tion of the system ( 1.1) given by Lamb [33. 

1. the system of normal solutions and the finding of tramafer 

formnX&s for them We shall consider the linearized equations of the 
steady motion of a viscous fluid in the absence of external forces 

vAv = $ grad p, divv=O 

where v is the velocity, p the pressure, v the kinematic viscosity co- 
efficient, and p the density of the fluid. Taking the curl of the left 
and right sides of the first equation. we eliminate p and obtain the 
system of equations 

rot Av = 0, div v = 0 (1.2) 
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Applying the method of separation of variables of 111 to the system 
(1.2), we obtain six types of solutions (we shall call them the normal 
solutions) in spherical coordinates: the exterior normal solutions 

“IfI* “lo. ‘In and the interior normal solutions pin, qln, rln (the ex- 
terior normal solutions are used for the solution of boundary value prob- 
lems in unbounded domains and the interior normal solutions in bounded 
domains). 

The solutions uln and pt n have the form 

U,” = r -1 
i 

Yin e,-- l-2 ‘ 
dY e- 

1 -2 e, 
1(1+-I) de In 0 1 (1 -1 1) sin +‘In) 

lf3 a 
Pin = rr+l Yin e,+ -- - ( 1+3 e, 

l(l+l, d% ‘)neO+ (1(1+ 1) sing &p )a -% ) (1.3) 

Y,,(0, fp) = P1,(ras8) e inqs (2 - 0, 1, 2, . , .; - t < n < 1) 

Here Pin are the associated Legendre functions which are defined by 
the formula 

But the solutions vLn, uln, qln and rIn coincide with similarly de- 
signated solutions of the static equation of elasticity [21, The expla- 
nation of this is that for these solutions div v = 0 (e.g. see [2]); 
consequently, being solutions of the static equation of elasticity 

Av -1 A5 grad div v = 0 

they satisfy the equation bv = 0 and hence the equations (1.2) also. 

Transfer formulas for the solutions vln and win are given in [2]. 

We shall find a transfer formula for uln which expresses the solution 
referred to a system of spherical coordinates with origin at the point 
0, (see figure) by means of interior normal solutions referred to a 
system of coordinates with origin at the point O2 (both systems have a 
common axis z passing through the points 0, and 0, and parallel axes x 
and y). 

We shall seek it in the form 

where the summation limits are simultaneously determined with the pre- 
sently unknown coefficients alkn, Plkn. ylkn (for convenience in 
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subsequent calculations we shall take the vectors rkn in this formula to 
be reduced by [21(2 t I)]-‘/*). 

To find the coefficients we shall rely, in the same way as was done 
in [21. on the transfer formula for spherical functions [3. p. 1361 

(1.5) 

where r2 < d (d is the distance between the points O1 and O2 in the 
figure). 

We shall take into account that we have Av = 0 for the solutions rkn 
and qk,,’ But for the solutions uln and I#~,, we have Av = grad 9, where 0 
is a harmonic function since 

for solutions of system (l.l), and div Av = 0 by virtue of the second 
equation of this system. 

Therefore, to find the coefficients alkn it is convenient to apply 
the Laplace operator to the left and right sides of the equality (1.4). 
We obtain 

or after expanding this equality into Qth components 

grad, 
(21 - IY,, Wl,Q) 

(1+ 1) r;+r I = = ‘lkn grad, 

BY virtue of (1.5) we obtain 

(- 1))~n (1 + k)! li(22- 1) 
‘//in = ,lrA~.:+l (k -t_ I)! (I - R)! (2/C + 3) (I + f) 

(k=n, n+1,. . .) (1.6) 

Later we shall use the condition that in view of (1.2) 

that is the Cartesian components of rot v are harmonic functions. But 
for the solutions Wkn (e.g. see [21) 

rot Pkn = 0 

Therefore, to find the coefficients ylkn it is convenient to take the 
curl of the left and right sides of the equality (1.4) and to Write out 
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the vector equality obtained in Cartesian ComPonents, fog example, in 

the zth component. We obtain 

After writing out the zth component of the curls corresponding to 

the vectors we obtain spherical functions on the left and right sides of 

(1.7). Using (1.5) and (1.6). we find 

rlkn = 

(- I)‘-“-1 (I + W 2n (21- 1) 
d’+k (k + n)! (1- n)! k (k + 1) 1(1+ 1) (k = n + 1, n + 2, . . .) (1.8) 

To find the coefficients plk,, we write out the vector equality (1.4) 

in 9th components. In addition we shall use the recurrence formulas 

p,, (4 tz+ n - 1) (I + n) PI-,, n-1 (4 + PI_,, n+1(4 
1/m=- 2n 

p,n (5) (1 - n + i) (I - n + 2) pz+,, n-i (2) + p,+,, n+i (2) 
vi-_ =- 2n 

which can be obtained with the help of formulas available in [4]. 

The obtained equality has to be fulfilled separately for associated 

functions with second index n - 1 and n + 1. For the latter functions it 

has the form (after reducing by -1/2i) 

l-2 YI-1, n+1 

-10 r1 
= kgn al&, k :k>31) Yk+l,n+lr2k+1+ 

+ x Plk,, yk-~n+1r2k-1+ jj Tlk,,Yk, n+l rzk 

k=n+l 

Hence, using (1.5), we find 

& = (-- lPRSL 
d!+k-1 

‘k-1. 1 + 2n2 ‘k-l. 1 

(k-1)(2k-1)1(1-j-l) I 
(1.9) 

where 

c kI = 1 [(21- 1) k’ + 21(1 + 1) k3 + l(3Z + 1) k2 + l(l + 1) k] (1.10) 

zkI = (1 - 2) k3 + (12 - 31- 1) k2 - 2 (I + 1) k (k = n + 2, R f 3, . . .) 

The transfer formulas for the exterior normal solutions are valid in,. 
side a sphere of radius d with center at the point 01 (see figure) since 

formula (1.5) holds in this region. In an analogous manner transfer 
formulas for the exterior of this sphere as well as for the interior 

normal solutions can be found. For this it is necessary to use the 
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corresponding formulas for spherical functions [3]. 

2. Applicatiaa of the solutions and transfer formulas obtained to 

the solution of bouodary value problems. We shall examine the flow of a 

viscous fluid about two spheres under the adopted assumptions that the 

velocity of the flow at infinity is equal to v0 and 

is directed, for example. parallel to a line joining 

the centers of the spheres (figure). 

The unknown velocity vector v, 

of equations (1.1) or (1. Z), must 

t ions 

v = 0 on the spheresv lo3 = vo 

which is a solution 

satisfy the condi- 

(2.1) 

The uniqueness theorem holds for the formulated 

problem.* We shall seek the solution of the boundary 

value problem in the form v = vs + vl, where vllm = 0 
by virtue of condition (2.1). 

Since (see II21 ) 

Ye = Iv0 I(COS0 e,--sslnlie~) = I vo 1910 (2.2) 

it is then natural to seek v1 in the form of a series in the axisym- 

metric solutions alo and vls(wl,, E 0). 

We shall seek v1 in the form of a series in the vectors u10 and v10 

which are referred to the centers of both spheres (see figure) 

m 
v1 = x A[,Ul, (n, el) Rl'+l + B,, V/,h, e11 RI's3 -t 

I=0 

+ g ‘$,q,h 02) R2 I+'+ B,,+jo(r2, 82) R2 
1+3 

(2.3) 
I=0 

Hence we have four series of unknown coefficients for the determina- 

tion of which there are four boundary conditions 

vIr = 0 v --- 19 - 0 (2.4) 

on the surface of each sphere. 

To require that the conditions (2.4) be fulfilled on the surface of 

l Its proof is not presented here. The validity of this theorem follows. 

for example, from the uniqueness theorem for the generalized solution 

proved in [5]. 
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the first sphere, we express ul,,(F2, 8,) and vlo(F2, 8,) by means of 

transfer formulas in terms of the normal solutions which are referred to 

the center of the sphere, i.e. which are functions of F1 and 8,. In addi- 

tion, it will first be necessary to use the angles aI and a2 and then to 

take into consideration that 

cos ai = - cos Oi (i = 1, 2), I II 
~~,k--5)=6-1)- P1,(4 

The boundary conditions on the surface of the second sphere are satis- 
fied by an analogous treatment. 

We shall obtain an infinite system of linear algebraic equations for 

finding the unknown coefficients which iS analogous to the system ob- 

tained in [Z], but is simpler since mirror images are absent in the prob- 

lem under consideration. Performing a substitution for the unknowns, 

as was also done in [Z] , we give to the system the form 

0: 

Sk + ~cklzl = bk (2.5) 
I=1 

whose matrix is a completely continuous operator 121 in the Hilbert 

space 1,. 

By virtue of the validity of the uniqueness theorem for the given 

problem there exists the following case of a Fredholm alternative: the 

system (2.5) has a unique solution, belonging to l,, for any value of 

the right side (bk vanishes for all k greater than some value because bk 

always belongs to 1,). This solution can be found by the method of 

truncation, or reduction, and by the method of successive approximations, 

at least in the region of regularity (the system is regular for suffi- 

ciently separated spheres). 

The proof that the constructed series in sum with v0 gives a solution 

to the formulated boundary value problem is carried out in the same 

manner as in [23. 

The problem of the flow about two spheres when v0 is directed per- 

pe;,dicularly to the line joining their centers is solved in an analogous 

manner (only here it is necessary to use the solutions with the second 

index f). Thus by virtue of the linearity of the equations under con- 

sideration the problem is solved for arbitrary direction of the velocity 

vO’ 

In a similar way it is then possible to solve the problem of the flow 

of a viscous fluid about three or more spheres. In addition, besides the 

transfer formulas. it will be necessary to use also rotation formulas 
[21 which express a normal vector in the given system of coordinates in 

terms of the normal vectors under consideration in a system of coordinates 



obtained from the given system by a rotation. 

Additionally, in a manner analogous to that done in fZ.61, it is 
possible to solve the boundary value problems (with certain simplifica- 
tions) of the flow of a viscous fluid about spherical cavities in a half- 
space and in a strip. 

In conclusion the author thanks P.Ia, Kochin and I.N. Vekua for their 
discussion and comments on the work. 
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