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In the present paper a complete system of solutions of the linearized
Navier-Stokes equations in the case of the steady motion of a viscous
fluid in the absence of external forces is given. The system of solu-
tions was found by the method of separation of variables given in [1}.
For the solutions obtained formulas of transformation from one center
to another, or traansfer formulas, are then deduced by means of which, as
is done in {2}. it is possible to solve various boundary value problems
involving flow about spheres which reduce to solving an infinite system
of linear algebraic equations. These solutions, deduced here by the
method of {1]. can in principle also be obtained from the general solu-
tion of the system (1.1) given by Lamb [3}.

1. The systes of normal solutions and the finding of transfer
formulas for them We shall consider the linearized equations of the
steady motion of a viscous fluid in the absence of external forces

1
vAv = 3 grad p, divv =0 1.1

where v i3 the velocity, p the pressure, v the kinematic viscosity co-
efficient, and p the density of the fluid. Taking the curl of the left
and right sides of the first equation, we eliminate p and obtain the
system of equations

rot Av =0, divy =10 (1.2
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Solutions of the linearized Navier-Stokes equations 263

Applying the method of separation of variables of [1] to the system
(1.2), we obtain six types of solutions (we shall call them the normal
solutions) in spherical coordinates: the exterior normal solutions
9., Y., %, and the interior normal solutions P, 9.0 Ta (the ex-
terior normal solutions are used for the solution of boundary value prob-
lems in unbounded domains and the interior normal solutions in bounded
domains).

The solutions u and P, have the form
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Here Pln are the associated Legendre functions which are defined by
the formula

a2 lin
P, (%) (=2 d
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But the solutions Yin "inr Ya and LI coincide with similarly de-
signated solutions of the static equation of elasticity [2]. The expla-
nation of this is that for these solutions div v = 0 (e.g. see [2));
consequently, being solutions of the static equation of elasticity

1
Av -+ T—2 grad divv =0
they satisfy the equation Av = 0 and hence the equations (1.2) also.

Transfer formulas for the solutions Vi, and v, are given in [2].

We shall find a transfer formula for u which expresses the solution
referred to a system of spherical coordinates with origin at the point
0, (see figure) by means of interior normal solutions referred to a
system of coordinates with origin at the point O2 (both systems have a

common axis z passing through the points Ol and O2 and parallel axes =z
and y).

We shall seek it in the form
Upy (71,01, @) = 3% @y, Py (72, B2y @) = 3 By G (2, B2, @) 3] Viiem Tin (72 B, € (1)

where the summation limits are simultaneously determined with the pre-
sently unknown coefficients oy, . Pyp,. Y(kn (for convenience in
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subsequent calculations we shall take the vectors LI in this formula to
be reduced by [21(1 + 1)]-1/2y,

To find the coefficients we shall rely, in the same way as was done
in [2]. on the transfer formula for spherical functions [3, p.136]

Y, (61, @) _ io (— =" (24 k)t Y i (62, @) ro¥ (1.5)
P AL ()l @ —n)!

where ry < d (d is the distance between the points 0, and O, in the
figure).

We shall take into account that we have Av = 0 for the solutions Thn
and . But for the solutions w, and Py, ve have Av = grad ¢, where ¢
is a harmonic function since

ad -
Av = grad vp
for solutions of system (1.1), and div Av = 0 by virtue of the second

equation of this system.

Therefore, to find the coefficients X vn it is convenient to apply
the Laplace operator to the left and right sides of the equality (1.4).
We obtain

Auy (ry, By, @) = D) ay, Ap,, (ra, 65, @)

or after expanding this equality into ¢th components

@l—-1)Y, (61,9) -3

2k + k
grad, {#(l 1 ri‘“ ] = Z Uy, grad,, [—-———k Yy (02, @) 7y ]

|

By virtue of (1.5) we obtain

(—1—n (L + k)! k(2—1)
Yen =T kF D) (—n)] Zk+3)(F1)

(k=n,n-+1,..) (1.6)
Later we shall use the condition that in view of (1.2)

A(rot vy =0

that is the Cartesian components of rot v are harmonic functions. But
for the solutions p,, (e.g. see [2])

rot pp, =0

Therefore, to find the coefficients y;, it is convenient to take the
curl of the left and right sides of the equality (1.4) and to write out
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the vector equality obtained in Cartesian components, for example, in
the zth component. We obtain

[ o]
rot, Uy (r1, 1, @) = 3} @y TOb, By (72, B2, @)+ D) Yign 1O, Ty (72, 62 @), (1.7)
k=n
After writing out the 2th component of the curls corresponding to
the vectors we obtain spherical functions on the left and right sides of
(1.7). Using (1.5) and (1.6), we find

kA () 2n 2 —1)
Tikn = 4tk kFall—nl Ek+DIT+1) (k=n+1,n+4+2,...) (1.8)

To find the coefficients Blkn we write out the vector equality (1.4)
in ¢th components. In addition we shall use the recurrence formulas

P, (®) I+rn—00+n)P_ o @&+ P_y ny,; ()
Vi—= 2n

P, () —n4+ ) —n+2)P o @+ Py, @
Vi—a = 2n

which can be obtained with the help of formulas available in [4].

The obtained equality has to be fulfilled separately for associated
functions with second index n -~ 1 and n + 1, For the latter functions it
has the form (after reducing by -1/2i)

1—2 Vi a4y k43 )
— 4 +1
Lil+1) ,-Il - 2 %kn ke (k1) k(k+1) l-+1, nt1 T +

o k
+ 2 Bin —1 L Al 2 Tunyk nt1 72
=N

Hence, using (1.5), we find

=DM ki) 7 Syt 20Ty (1.9)
Bun = T T AT T T | e =D 105 D) ‘
where
S =11 — 1k + 20+ DB HIEI+ )R+ 1)k (1.10)
Ty =(—2 K+ B —3l— 1)k — 1+ 1)k (k=n4+2 nt3,..)

The transfer formulas for the exterior normal solutions are valid in-
side a sphere of radius d with center at the point 01 (see figure) since
formula (1.5) holds in this region. In an analogous manner transfer
formulas for the exterior of this sphere as well as for the imterior
normal solutions can be found. For this it is necessary to use the
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corresponding formulas for spherical functions [3].

2. Application of the solutions and transfer formulas obtained to
the solution of boundary value problems. We shall examine the flow of a
viscous fluid about two spheres under the adopted assumptions that the
velocity of the flow at infinity is equal to Yo and
is directed, for example, parallel to a line joining
the centers of the spheres (figure).

The unknown velocity vector v, which is a solution
of equations (1.1) or (1.2), must satisfy the condi-
tions

v=0o0n the spheresv|, =—=vg 2.1

The uniqueness theorem holds for the formulated
problem.* We shall seek the solution of the boundary
value problem in the form v = v + vy where Vx‘m =0
by virtue of condition (2.1).

Since (see [2])

Yo = | Vo |(cos0 e, — sinbey) = | vo| quo (2.2)

it is then natural to seek vy in the form of a series in the axisym-
metric solutions u, and Yoo = 0).

We shall seek v, in the form of a series in the vectors u;, and vj,
which are referred to the centers of both spheres (see figure)

00
vi= S Ay (r, 00) BT By vy (m, 00) R
=0
=1 {
+ N A uyy (ra, 82) Re' T4 By vig (ra, 0) Ry (2.3)
=0

Hence we have four series of unknown coefficients for the determina-
tion of which there are four boundary conditions
v, =0 V=0 (2.4)
on the surface of each sphere.

To require that the conditions (2.4) be fulfilled on the surface of

* Jts proof is not presented here. The validity of this theorem follows,
for example, from the uniqueness theorem for the gemeralized solution
proved in [5].
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the first sphere, we express u;,(ry, 62) and v o(ry, 62) by means of
transfer formulas in terms of the normal solutions which are referred to
the center of the sphere, i.e. which are functions of r and 61. In addi-
tion, it will first be necessary to use the angles <« and oy and then to
take into consideration that

cosa;=—cosh, (i=1,2), P, (—z)=(—1)""P, (2)

The boundary conditions on the surface of the second sphere are satis-
fied by an analogous treatment.

We shall obtain an infinite system of linear algebraic equations for
finding the unknown coefficients which is analogous to the system ob-
tained in [2], but is simpler since mirror images are absent in the prob-
lem under consideration. Performing a substitution for the unknowns,
as was also done in [2], we give to the system the form

x
%+ > Cuiz = by (2.5)
=1
whose matrix is a completely continuous operator [2] in the Hilbert
space lz-

By virtue of the validity of the uniqueness theorem for the given
problem there exists the following case of a Fredholm alternative: the
system (2.5) has a unique solution, belonging to l2, for any value of
the right side (bk vanishes for all k greater than some value because bk
always belongs to l2). This solution can be found by the method of
truncation, or reduction, and by the method of successive approximations,
at least in the region of regularity (the system is regular for suffi-
ciently separated spheres).

The proof that the constructed series in sum with A\ gives a solution
to the formulated boundary value problem is carried out in the same
manner as in [2].

The problem of the flow about two spheres when A\ is directed per-
peidicularly to the line joining their centers is solved in an analogous
manner (only here it is necessary to use the solutions with the second
index 1). Thus by virtue of the linearity of the equations under con-
sideration the problem is solved for arbitrary direction of the velocity
Y

In a similar way it is then possible to solve the problem of the flow
of a viscous fluid about three or more spheres. In addition, besides the
transfer formulas, it will be necessary to use also rotation formulas
[2] which express a normal vector in the given system of coordinates in
terms of the normal vectors under consideration in a system of coordinates



268 R.N. Kaufman

obtained from the given system by a rotation.

Additionally, in a manner analogous to that done in [2.6}, it is
possible to solve the boundary value problems (with certain simplifica-
tions) of the flow of a viscous fluid about spherical cavities in a half-
space and in a strip.

In conclusion the author thanks P.Ia. Kochin and I.N. Vekua for their
discussion and comments on the work.

BIBLIOGRAPHY

1. Gel’ fand, I.M. and Shapiro, Z.Ia., Predstavleniia gruppy vrashchenit
i gruppy Lorentza (Bepresentation of Rotation Groups and Lorentz
Groups). Fizmatgiz, 1958.

2. Kaufman, R.N., Reshenie nekotorykh kraevykh zadach staticheskoi
teorii uprugosti dlia sloia s sharovoi polost’ iu (Solution of a
boundary value problem of the static theory of elasticity for a
strip with a spherical cavity). PMM Vol. 22, No. 3, 1958.

3. Lamb, H., Gidrodinamika (Hlydrodynamics). Gostekhizdat, 1947.

4, Hobson, E.V., Teoriia sfericheskikh i ellipsoidal ’nykh funktsii
{Theory of Spherical and Ellipsoidal Functions). IL, 1852.

5. Ryzhik, I.M. and Gradshtein, I.5., Tablitsy integralov, summ, riadov
i proizvedenii (Tables of Integrals, Sums, Series and Products).
Gostekhizdat, 1951.

6. Ladyzhenskaia, 0.A., Matematicheskie voprosy dinamiki viazkoi neszhi-
maemoi zhidkosti (Mathematical Questions of the Dynamics of a
Viscous Incompressible Fluid). Fizmatgiz, 1961.

7. Lambina, E.N., Reshenie kraevoi zadachi staticheskoi teorii upru-
gosti dlia poluprostranstva s sharovoi polost’iu pri zadannykh na
granitze peremeshcheniiakh (Solution of a boundary value problem
of the static theory of elasticity for the half-space with a
spherical cavity with given displacements on the boundary). I:zv.
Akad. Nauk SSSR, ser. fiz.-tekhn. nauk, No. 2, 1958.

Translated by R.D.C.



